重采样方法在高度不平衡数据分类中的应用研究
摘 要
随着信息技术的飞速发展,医疗、银行、互联网等领域数据的数据信息会被广泛的收集,在这其中不平衡数据普遍存在。不平衡数据学习现在也是机器学习领域的研究热点之一。在机器学习传统的分类算法中,通常是在数据集的类别样本数均匀分布和错分代价相等的情况下假设的。然而在实际的数据大多数都存在不平衡的特点,这就导致传统分类方法在为了保证整体分类准确性上偏向于多数类而忽略了少数类的数据,最终数据没办法得到准确有效的分类,这种情况在不平衡比越大的数据集中所带来较差的
起重采样方法在高度不平衡数据分类中的应用研究-10126字.docx